Chosen Ciphertext Secure Keyed-Homomorphic Public-Key Encryption

نویسندگان

  • Keita Emura
  • Goichiro Hanaoka
  • Go Ohtake
  • Takahiro Matsuda
  • Shota Yamada
چکیده

In homomorphic encryption schemes, anyone can perform homomorphic operations, and therefore, it is difficult to manage when, where and by whom they are performed. In addition, the property that anyone can “freely” perform the operation inevitably means that ciphertexts are malleable, and it is well-known that adaptive chosen ciphertext (CCA) security and the homomorphic property can never be achieved simultaneously. In this paper, we show that CCA security and the homomorphic property can be simultaneously handled in situations that the user(s) who can perform homomorphic operations on encrypted data should be controlled/limited, and propose a new concept of homomorphic publickey encryption, which we call keyed-homomorphic public-key encryption (KH-PKE). By introducing a secret key for homomorphic operations, we can control who is allowed to perform the homomorphic operation. To construct KH-PKE schemes, we introduce a new concept, transitional universal property, and present a practical KH-PKE scheme with multiplicative homomorphic operations from the decisional Diffie-Hellman (DDH) assumption. For l-bit security, our DDH-based KH-PKE scheme yields only l-bit longer ciphertext size than that of the Cramer–Shoup PKE scheme. Finally, we consider an identitybased analogue of KH-PKE, called keyed-homomorphic identity-based encryption (KH-IBE) and give its concrete construction from the Gentry IBE scheme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-malleability from Malleability: Simulation-Sound Quasi-Adaptive NIZK Proofs and CCA2-Secure Encryption from Homomorphic Signatures

Verifiability is central to building protocols and systems with integrity. Initially, efficient methods employed the Fiat-Shamir heuristics. Since 2008, the Groth-Sahai techniques have been the most efficient in constructing non-interactive witness indistinguishable and zero-knowledge proofs for algebraic relations. For the important task of proving membership in linear subspaces, Jutla and Roy...

متن کامل

CCA-Secure Inner-Product Functional Encryption from Projective Hash Functions

In an inner-product functional encryption scheme, the plaintexts are vectors and the owner of the secret key can delegate the ability to compute weighted sums of the coefficients of the plaintext of any ciphertext. Recently, many inner-product functional encryption schemes were proposed. However, none of the known schemes are secure against chosen ciphertext attacks (IND-FE-CCA). We present a g...

متن کامل

Threshold Cryptosystems Secure against Chosen-Ciphertext Attacks

Semantic security against chosen-ciphertext attacks (INDCCA) is widely believed as the correct security level for public-key encryption scheme. On the other hand, it is often dangerous to give to only one people the power of decryption. Therefore, threshold cryptosystems aimed at distributing the decryption ability. However, only two efficient such schemes have been proposed so far for achievin...

متن کامل

On CCA-Secure Somewhat Homomorphic Encryption

It is well known that any encryption scheme which supports any form of homomorphic operation cannot be secure against adaptive chosen ciphertext attacks. The question then arises as to what is the most stringent security definition which is achievable by homomorphic encryption schemes. Prior work has shown that various schemes which support a single homomorphic encryption scheme can be shown to...

متن کامل

Homomorphic Authenticated Encryption Secure against Chosen-Ciphertext Attack

We study homomorphic authenticated encryption, where privacy and authenticity of data are protected simultaneously. We define homomorphic versions of various security notions for privacy and authenticity, and investigate relations between them. In particular, we show that it is possible to give a natural definition of IND-CCA for homomorphic authenticated encryption, unlike the case of homomorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013